Review: Derivative Rules - 10/21/16

1 Basic Rules

1. $\frac{d}{d x}[f(x)+g(x)]=\frac{d}{d x} f(x)+\frac{d}{d x} g(x)$
2. $\frac{d}{d x}[f(x)-g(x)]=\frac{d}{d x} f(x)-\frac{d}{d x} g(x)$
3. $\frac{d}{d x}[c f(x)]=c \frac{d}{d x} f(x)$
4. $\frac{d}{d x} c=0$

2 Power Rule

Power Rule: $\frac{d}{d x} x^{n}=n x^{n-1}$.
Example 2.0.1 What is $\frac{d}{d x} x^{2}-3 x+1$? We can separate each term using the addition rule constant multiple rule to get $\frac{d}{d x} x^{2}-3 x+1=\frac{d}{d x} x^{2}-3 \frac{d}{d x} x+\frac{d}{d x}$. Then using the power rule (and the fact that the derivative of a constant is zero), we get $\frac{d}{d x} x^{2}-3 x+1=2 x-3$.

Example 2.0.2 What is $\frac{d}{d x} \frac{1}{x}+\pi^{3}$? We can separate these out using the addition rule to get $\frac{d}{d x} \frac{1}{x}+\frac{d}{d x} \pi^{3}$. But π^{3} is just a constant, so $\frac{d}{d x} \pi^{3}=0$! Then we just have to apply the product rule to $\frac{1}{x}$ to get that $\frac{d}{d x} \frac{1}{x}=-1 x^{-1-1}=-x^{-2}=\frac{-1}{x^{2}}$.

$3 e^{x}$

Rule for $e^{x}: \frac{d}{d x} e^{x}=e^{x}$.
Example 3.0.3 What is $\frac{d}{d x} 7 e^{x}$? By the constant multiple rule, we have $\frac{d}{d x} 7 e^{x}=7 \frac{d}{d x} e^{x}=7 e^{x}$.
Example 3.0.4 What is $\frac{d}{d x} 3 x^{100}-\pi e^{x}$? Using the constant multiple rule and the power rule, we have $3 \frac{d}{d x} x^{100}-\pi \frac{d}{d x} e^{x}=3(100) x^{100-1}-\pi e^{x}=300 x^{99}-\pi e^{x}$.

Practice Problems

1. What is $\frac{d}{d x} x^{5}-x^{2}+3$?
2. What is $\frac{d}{d x} x-e^{7}$?
3. What is $\frac{d}{d x} x^{4}+3 e^{x}$?
4. What is $\frac{d}{d x} 17 e^{x}-2400$?

Solutions

1. $5 x^{4}-2 x$
2. 1
3. $4 x^{3}+3 e^{x}$
4. $17 e^{x}$
